
PHYSICAL REVIEW E DECEMBER 1999VOLUME 60, NUMBER 6
Chemically driven traveling waves in DNA
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The nonlinear mechanical model constructed in a previous paper@Nuovo Cimento D20, 833 ~1998!# is
developed in order to study the dynamics of the DNA double helix. It is assumed that the hydrophobic
interaction between subsequent base pairs may be influenced by a RNA polymerase. The Lagrangian, con-
structed on the basis of ‘‘geometrical’’ properties of the DNA molecule, depends on time and contains first and
second derivatives of the twist angle. The energy dissipation term is added to the dynamical equations resulting
from the Lagrange formalism. It is proved that the system has pulselike solitary wave solutions for which the
dissipated energy is balanced by the energy pumped by the advancing RNA polymerase. The physical inter-
pretation of our solution is the local untwisting of the DNA molecule during transcription of messenger RNA.
@S1063-651X~99!00712-6#

PACS number~s!: 87.15.He, 87.10.1e
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I. INTRODUCTION

The basic form of DNA is double helix, consisting of tw
sugar-phosphate backbones and a base pairs chain insi
schematic drawing of the duplex DNA in an unwound hyp
thetical state, which one can call a planar ladder state
shown in Fig. 1~from Calladine and Drew@1#!. The distance
B between adjacent sugars or phosphates in the DNA ch
is roughly 6 Å , while the thickness of the flat part of th
DNA base isA53.3 Å , which implies a gap of 2.7 Å be
tween the bases. Because the four DNA bases guanine
enine, cytosine, and thymine are hydrophobic substan
these bases tend to stay together, and the surrounding w
does not fill gaps between them. If the bases are in con
the distance between their centers isA, smaller than the dis-
tance between the adjacent sugarsB. This is because the
sugar-phosphate backbones must wrap around the base
chains in order to preserve their length. Elementary geom
ric considerations enable one to calculate the angleDQ by
which each phosphate turns relative to its neighboring ph
phate along the helix:

DQ52arcsinS ~B22A2!1/2

2R D532.3o, ~1!

where 2R518 Å is the distance between the correspond
phosphates from the opposite chains. From Eq.~1! it follows
that there are roughly 360/32.3'11 phosphates per comple
turn of the DNA helix. This result closely agrees with e
periment: almost all DNA double helices have between
and 12 phosphates per turn. The above analysis~following
Calladine and Drew@1#! suggests that both right- and lef
handed duplex helical structures are expected. Altho
there are, in fact, known examples of both types of dou
helices, the right-handed formsA and B with 11 and ten
phosphates per helical turn are preferred to the left-handZ
form with 12 phosphates per turn.

The base pair sequence codes the genetic information
from the mechanical point of view it is a nonperiodic cha
The four bases composing DNA have different masses. T
poses a problem for all models. Fortunately, the two b
PRE 601063-651X/99/60~6!/7253~9!/$15.00
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pairs composing DNA consist of one light base and o
heavy base, so their masses are almost equal. That is
adenine-thymine~A-T! pair has mass 259 a.m.u., and t
guanine-cytosine~C-T! pair is only slightly heavier with
mass 260 a.m.u. The total mass per base pairm ~i. e., the
mass with adjacent sugars and phosphate groups! is approxi-
mately 580 a.m.u. Moreover the H-bond interaction coupl
the G-C pair is more than twice as strong as that for the A
pair. Only in an approximation in which one neglects inte
nal degrees of freedom of the base pairs, and treats each
pair as a rigid body, can DNA be regarded as a perio
structure.

The interest in the nonlinear dynamics of DNA start
when Englanderet al. @2# suggested that the existence
solitons propagating along the DNA molecule may be imp
tant in a process called ‘‘RNA transcription.’’ In the las
decade several models~see Gaetaet al. @3# for the review!
were proposed in order to substantiate this idea in quan
tive terms. The scope of RNA transcription is to copy gene
information for DNA into messenger RNA. During this pro
cess two DNA strands have to locally separate~local opening
of DNA! to let one of the strands serve as a template for
synthesis of a new RNA strand. There are two import
models, the one proposed by Yakushevich@4# and improved

FIG. 1. The scheme of DNA, the hypothetical planar DNA la
der with its key dimensionsS ~sugar! andP ~phosphate!.
7253 © 1999 The American Physical Society
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7254 PRE 60TOMASZ LIPNIACKI
by Gaeta @5#, and the second proposed by Peyrard a
Bishop @6# which concentrates on transversal openings
base pairs.

In the current paper we propose a different approach
DNA dynamics based on a ‘‘mechanical’’ model of DN
dynamics developed by Lipniacki@7#. The constructed
model allowed us to describe analytically torsional travel
waves propagating along the DNA molecule. The pulsel
solutions described the propagation of an untwisted~or op-
positely twisted! region along the molecule. Local untwistin
seems necessary for the formation of a transcription bub
~the braided strands cannot separate!, and in fact the DNA
lost one or two turns in order for the RNA polymerase m
ecule to function~Fig. 2; also see Calladine and Drew@1#!.
The untwisted open region, 15-20 base pairs long, toge
with RNA polymerase, moves along the DNA.

In the previous paper~Lipniacki @7#!, the energy dissipa
tion ~damping! was not included in the model. However,
seems obvious that the motion of DNA leads to some ene
dissipation, due to the nonelasticity of the DNA molecule
to interaction with the solvent. Moreover it is easy to che
that when energy dissipation is present, pulse-like soluti
cannot exist, unless the energy is somehow added to
system. It was also not explained why the untwisting of
DNA molecule takes place in the vicinity of the RNA poly
merase. The present paper will pursue the already prop
model, connecting the mechanism of energy input with
fact that DNA untwists and opens close to the RNA po
merase.

The main idea is the following. In the vicinity of th
polymerase the hydrophobic forces between base pairs
weaker than those in the rest of the DNA molecule. This
due to the fact that the RNA polymerase is accompanied
flat oily amino acids such as phenylalanine, tyrosine, a
tryptophan, which can insert themselves between the b
pairs. Thus, close to polymerase, it is easier to separate
pairs and so untwist the DNA strands. It is known@1# that a
hydrophobic substance called ethidium bromide added to
DNA slips between neighboring base pairs, and as the re
the DNA untwists. The dependence of the strength of
DNA molecule on the solvent was also confirmed in rec
experiments~Smith, Cui, and Bustamante@8#!. The hydro-
phobic forces play a crucial role in stretching DNA up
extensions of 70%, when the separation between bases i
Å . The motion of the untwisted region is then forced by t

FIG. 2. Transcription of messenger RNA~from Calladine and
Drew @1#!. The DNA molecule untwists close to RNA polymeras
One of the two DNA strands serves as a template for synthesis
new RNA strand.
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motion of the RNA polymerase, which moves along t
DNA due to chemical reactions.

II. DESCRIPTION OF THE MODEL

In the proposed model~Fig. 3! base pairs are represente
by rigid plates situated along thez axis. The hydrophobic
forces acting between every two subsequent base pairs
represented by springs. The relaxed length of those sprin
A; however, it is not assumed that the springs satisfy Hoo
law. The sides of slabs are connected by two side spri
representing the sugar-phosphate chains. The side sp
segments connecting consecutive slabs have a free lengB
and a spring constantq. The distance between backbon
springs and the duplex axis going through the centers of
slabs isr o . The mass and inertial momentum of each plate
equal to the mass and momentum per base pair, while al
springs are assumed to have no mass. It is assumed
every slab has two degrees of freedom: it can move al
and turn around thez axis, and its position is described by
displacementw and a torsional angleu. WhenA,B, as in
real DNA, the system has two natural minima of energy~for
which all the springs are in the natural state!: a left-hand
twisted ladder and a right-hand twisted ladder.

To construct the LagrangianL5T2F of the system, let
us assume that side springs satisfy Hook’s law Then the
ergy of interactionF i ,i 11 between two adjacent slabs is

F i ,i 115ho~Dw2A,z,t !1q„ADw214r o
2 sin2~DQ/2!2B…2,

~2!

f a

FIG. 3. The schematic picture of the mechanical model. T
spring constant of the side spring segments isq, while ho(Dw,z,t)
is the energy is the potential energy of hydrophobic interact
between subsequent slabs.
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PRE 60 7255CHEMICALLY DRIVEN TRAVELING WAVES IN DNA
whereho(Dw2A,z,t) denotes the potential energy functio
for the hydrophobic interaction. Theho dependence on pos
tion z and timet is due to the fact that hydrophobic force
depend~as we stated above! on the solvent, and may var
along the DNA molecule. WhenDQ is small, 2 sin(DQ/2)
may be replaced byDQ ~For DQ532o the error is 1.3%!.

In the continuum limit,

Dw5w8A, DQ5Q8A, ~3!

the primes denoting differentiation with respect toz. Then
the potential energy of the whole chain has the form

F5AE Fh~w821,z,t !1q~Aw821r o
2Q822B/A!2

1
eoQ92

2 Gdz, ~4!

whereh(w821,z,t)5ho(Dz2A,z,t)/A.
The term

AE eoQ92

2
dz ~5!

has been added to Eq.~4! in order to describe the energ
associated with the additional curvature of the side spri
whenQ9 differs from zero. This higher order derivative ter
plays a key role both in the physical interpretation and
mathematical development of the present model. The
zero potential energy states are characterized by

w85const51, Q85const56
~B22A2!1/2

Aro
. ~6!

Without the last term in Eq.~4! the states in whichQ8 jumps
from

1
~B22A2!1/2

Aro
to 2

~B22A2!1/2

Aro
~7!

will also have a minimum zero energy, which seems u
physical because in those states the side springs~the sugar-
phosphate chains! are strongly distorted.

The kinetic energyT is

T5
1

AE Fmẇ2

2
1

JQ̇2

2
Gdz, ~8!

wherem andJ are the mass and moment of inertia per ba
pair, and the dot denotes time derivative.

To write the Lagrangian in a simpler form, one may e
ploy units in whichA51; thus let

fªr oQ, e5eo /r o
2 , I 5J/r o

2 . ~9!

The potential and kinetic energies of the system are now

F5E Fh~w821,z,t !1q~Aw821f822B!21
ef92

2 Gdz,

~10!
s

e
o

-

e

-

T5E Fmẇ2

2
1

I ḟ2

2
Gdz, ~11!

III. EQUATIONS OF MOTION

In the further analysis we concentrate on the followi
cases:

~i! In the first case we assume that central springs~like
those at the side! satisfy Hook’s law@i.e., that the potential
function h is quadratic:h(w821,z,t)5k(z,t)(w821)2] and
then we expand the potential energy in power series w
respect (w821) andf8.

~ii ! In the second case we assume that side springs~sugar-
phosphate chains! are stretch proof. With that simplification
we manage to keep the potential functionh(w821,z,t) in its
general form.

In both cases we introduce a non elastic damping term
the resulting evolution equations.

A. The first case

Let u85w821 andc5B21. For further analysis we ex
pand the potential energy into a power series with respec
u85w821 andf8. We assume thatu8;e with e!1. The
order off8 has to be chosen carefully to conserve the m
properties of the potential energy function. Let us note t
for a fixedu8,c the potential energy is a double well func
tion with respect tof8, with the minima at

f856A2c1c222u82u82, ~12!

while the global minima of the potential energy as a functi
of u8,f8, and f9 are, for u850, f8252c1c2. To con-
serve this important property one has to expand the pote
energy up to fourth order inf8. For smallc, typically f8 is
of orderc1/2, while u8 is of orderc. For example, for fixed
f850 the potential energy is minimized for

u85
q

k1q
c. ~13!

Moreover, in the second term of Eq.~10!, describing the
potential energy of the side spring,u85w821 is compared
with f82. This justifies the assumption

u8;e, f82;e, ~14!

wheree!1. Hence to withinO(e2) we have

F5E Fk~z,t !u821q„~u82c!21f82~u82c!1f84/4…

1
ef92

2 Gdz. ~15!

One can check that the zero energy state now occurs
u850 andf856A2c. So here, as in the original case, the
are two minimum energy states, and again for any fixedu8
,c the potential energy is a double well function of the tw
densityf8.

The evolution equations foru and f, given by Euler-
Lagrange equations with LagrangianL5T2F, are



ns

gy
e
to
ay
ca

ta
in
a

u
o

ar

y-

re

ic

e

g

we
ed
as

een

lu-
eal
ili-
he
or

. Of

he
es
e it
is
.

nd
Eq.

is

d

7256 PRE 60TOMASZ LIPNIACKI
I f̈5qS 2f8~u82c!1f832
ef-

q D 8
, ~16!

mü5„2~k~z,t !1q!u81qf82
…8. ~17!

The dispersive relation for small amplitude oscillatio
around the relaxed statesuo50 andf5A2c z in the case
k5const can be found in Ref.@7#.

Motion of the DNA molecule leads in general to ener
dissipation. The mechanical energy can be dissipated du
a friction during the motion through the solvent, or due
nonelasiticity of the DNA molecule. In the first case we m
expect that the dissipation term is proportional to the lo

angular velocityḟ. There are, however, some fundamen
problems going beyond the presented model when includ
this term; we discuss these when passing to traveling w
solutions.

Now we focus on the second case, and take into acco
the energy dissipation due to the inelastic torsional motion
DNA molecule. That is, to the right-hand side of Eq.~16! we

add the dissipation termpḟ9 ~wherep5 const.0) propor-
tional to the speed with which the torsion of the sug
phosphate chains changes. Thus we have

I f̈5qS 2f8~u82c!1f832
ef-

q D 8
1p ḟ9. ~18!

We observe that without ‘‘potential energy’’ terms, the d
namical equation~18! reads

I f̈5p f 9̇, ~19!

and integrating we obtain

I ḟ5pf91Co , ~20!

which is the diffusion equation for the torsional anglef.

This suggest that the assumed form (pḟ9) of the ‘‘nonelas-
tic’’ damping term is resonable.

The role of the dissipation term will become even mo
clear when we arrive at the final ordinary equation~26! for
X5df/dt, t5(z2vt). One may think that the nonelast

dissipation term should be assumed in the formpḟ8, but in
such a case, on the right-hand side one of Eq.~26! one ob-
tains, instead of2vpẊ, another term2vpX, which is irrel-
evant since it only modifies the coefficientb. Usually when
the order of the original dynamic equation isn, then the
order of dissipation term has to ben21.

Now focusing our attention on solitary wave solutions, w
transform Eqs.~17! and~18! into ordinary differential equa-
tions ~ODE’s!. The solitary waves propagate without chan
ing their form, i.e.,

u~z,t !5u~z2vt !5u~t!, f~z,t !5f~z2vt !5f~t!,
~21!

wherev is the wave velocity. Furthermore we assume

k~z,t !5k~z2vt !5k~t!. ~22!
to

l

l
g

ve

nt
f

-

-

The last assumption reflects the fact that from now on
restrict our considerations to torsional traveling waves forc
by advancing RNA polymerase, the presence of which,
stated above, influences the hydrophobic forces betw
base pairs.

According to assumption~21!, ḟ52vf8. We are look-
ing for solutions satisfyingf8→fo8 for (z2vt)→6`,

where fo8Þ0. This means thatḟÞ0 at infinity; in other
words, the DNA rotates. This may be a surprising conc
sion, but rotation of the DNA probably accompanies the r
RNA transcription. Strictly speaking, there are two possib
ties: since the RNA polymerase has to follow one of t
DNA strands, either the DNA must rotate around its axis,
the RNA polymerase together with the longm-RNA must
rotate around the DNA. The latter seems less probable
course the rotation of an ‘‘infinitely long’’ chain will lead to
infinite energy dissipation. Physically, the rotation of t
DNA may be due to action of many RNA polymeras
which are attached to the DNA and simultaneously mak
rotating. The problem is far from being understood. This
why we restrict our considerations to nonelastic damping

Equations~16!–~21! yield

Iv2ḟ5qS 2ḟ~ u̇2c!1ḟ32
eḟ̈

q
2

vpf̈

q
D 1C1 , ~23!

mv2u̇52„k~j!1q…u̇1qḟ21C28 , ~24!

where the dot denotes differentiation with respect tot. C1

and C285C222qc are the integration constants, whereC1

and 2C2 represent, respectively, the torsional moment a
the stretching force applied to the chain at its ends. From
~24! we obtain

u̇5
qḟ222qc1C2

mv222„k~t!1q…
, ~25!

and forX5ḟ we have

eẌ52vpẊ1a~t!X31b~t!X1C1 , ~26!

where

a~t!5qS 2k~t!2mv2

2„k~t!1q…2mv2D , ~27!

b~t!5
Iv412qcmv222qC222„k~t!1q…Iv224qkc

2„k~t!1q…2mv2
.

~28!

For sufficiently small velocityv2,2k/m, the coefficient
a.0; moreover,b,0 when c„v2(m2I /c)22k…2C2,0.
These two conditions are not very restrictive; the first one
satisfied for any reasonable propagation velocityv (k is of
order 10 pN/Å, which implies that our condition is satisfie
for velocities as large as 109 bases per second!. The second
condition is satisfied if the strain (2C2) is not large enough
to change the structure of the DNA molecule. Equation~26!
can then be rewritten in the form
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eẌ52vpẊ2
]U~t,X!

]X
, ~29!

where

U~t,X!52Fa~t!X4

4
1

b~t!X2

2
1C1 f G ~30!

is a double maximum function with respect toX, provided
the torsional momentC1 is not too large.

To end this section we observe that in the limitq→`
~stretch-proof sugar-phosphate chains!,

a~t!5ao~t!5k2mv2/2, b~t!5bo~t!522aoc2Iv2

2C2 . ~31!

This means that the assumption that the sugar-phosp
chains are stretch proof does not influence the main pro
ties of the final dynamical equation. In Sec. III B we assu
that the side chains maintain their length. Such simplifi
tions allow us to keep the potential function of hydrophob
interaction in its general form.

B. The second case

The potential and kinetic energies are now

F5E Fh~w821,z,t !1
ef92

2 Gdz, ~32!

T5E Fmẇ2

2
1

I ḟ2

2
Gdz. ~33!

In addition we have the constraint

w821f822B250, ~34!

implying that the side springs maintain their lengthB.
The evolution equations forw and f given by Euler-

Lagrange equations with the Lagrangian

L5T2F1l~w821f822B2!, ~35!

wherel is the Lagrange multiplier, are

I f̈1~ef-12lf8!82pḟ950, ~36!

mẅ2S ]h

]w8
22lw8D 8

50, ~37!

w821f822B250. ~38!

As in the first case we included an inelastic friction termpḟ9
in Eq. ~36!. Assuming

w~z,t !5w~z2vt !5w~t!, f~z,t !5f~z2vt !5f~t!,
~39!

h~w821,z,t !5h~w821,z2vt !5h~w821,t!, ~40!

we transform the set of equations~36!–~38! into ODE’s. Af-
ter integration we obtain the system of equations
ate
r-

e
-

Iv2ḟ52eḟ̈22lḟ2vpf̈1C2 , ~41!

mv2ẇ5
]h

]ẇ
22lẇ1C1 , ~42!

ẇ21ḟ22B250, ~43!

where the dot denotes differentiation with respect tot. After
some simple algebra we obtain the following equation

X5ḟ:

eẌ5X~m2I !v21S ]h

]ẇ
1C1D ]ẇ

]X
2vpẊ1C2 , ~44!

with

ẇ5AB22X2. ~45!

Finally,

Ẍ52
]W~X,t!

]X
2dẊ, ~46!

where

W~X,t!52
1

e S ~m2I !v2X2

2
1C2X1@h„ẇ~X!,t…1C1ẇ# D

~47!

andd5vp/e.
If h(ẇ,t) is a single minimum function with respect toẇ

for anyt ~i.e., the potential of the base pair interaction ha
single minimum! then h(X,t) is a symmetric double wel
function sinceẇ is symmetric with respect toX. The poten-
tial functionW(X,t) has precisely two maxima with respe
to X ~for anyt), satisfying the constraint that the coefficien
C2 andC1 are not too large. WhenC250, W(X,t) is sym-
metric; whenC2Þ0, W(X,t) is not symmetric; and one
maximum is higher then the other.

Since the potential functionU(X,t) appearing in Eq.~29!
in Sec. III A is a special case of the potential functio
W(X,t), it is sufficient to examine Eq.~46! only in our
further considerations. The homoclinic~heteroclinic! solu-
tions of Eq. ~46! correspond to traveling wave pulselik
~kinklike! solutions of the initial system of equation~36!–
~38! or ~17! and ~18!.

Since the mechanical analogy seems appropriate for
problem@Eq. ~46!#, we callX the position of the particle, and
t the time. IfW5W(X) andd50, Eq. ~46! simplifies to

Ẍ52
dW~X!

dX
. ~48!

This equation can be interpreted as the equation of o
dimensional frictionless motion of a particle in the potent
field W(X). If C250 @see Eq.~47!#, thenW(X)5W(2X),
and Eq.~48! has a heteroclinic solution describing the pa
ticle motion from one maximum to the other~starting att
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52` and ending att5`), @Fig. 4~a!#. If C2Þ0, then one
maximum is lower then the other, and there exists a
moclinic orbit starting and ending on the lower maximu
@Fig. 4~b!#.

When d.0, however, forW5W(X) a homoclinic orbit

cannot exist. The term2dẊ in Eq. ~46! can be interpreted a
a friction proportional to the particle velocity. Since the m
chanical energy is dissipated, it is obvious that a part
starting from a maximum~with zero kinetic energy! cannot
return to this maximum.

If Wo(X1)2Wo(X2).0, whereX1 andX2 are maxima of
Wo(•), then, for a properly chosend, there exists a hetero
clinic orbit ‘‘spanning’’ the upper and lower maxima. Reca
that d5vp/e; hence a givend implies the velocity of the
traveling wave. In such a case the velocity of the kinkli
traveling wave depends onWo(X1)2Wo(X2), i.e., on the
value of the torsional momentC2 applied to the molecule
@see Eq.~45!#.

The situation is different when there is a nonzero fricti
termdẊ but the potentialW5W(X,t) depends on timet. In
this case the dissipated mechanical energy can be bala
by the energy pumped by the varying potential field. In su
a case a homoclinic solution may exist. In Sec. IV we sh
that, under some conditions, Eq.~46! has a homoclinic solu-
tion.

FIG. 4. The potential energyW(X) and phase space (X,Ẋ) dia-
gram of Eq.~48!. ~a! The maxima have the same height; the h
eroclinic orbit spans the two maxima~the two saddle points!. ~b!
The right maximum is lower, and there exists a homoclinic or
starting and terminating on that maximum.
-
,

-
e

ed
h

IV. EXISTENCE OF THE HOMOCLINIC ORBIT

We confine our considerations to the case when

W~X,t!5Wo~X!1eV~X,t!, ~49!

and there exists a pair t1,t2 such that
suppV(X,•)P@t1 ,t2# for any X. Let

G~X,t!ª
]V~X,t!

]X
. ~50!

We also assume thatWo(X) has precisely two maxima a
X1 andX2 andWo(X1)ÞWo(X2) @the last is true if the tor-
sional momentC2Þ0; see Eq.~47!#. Without loss of gener-
ality, we may assumeDEMªWo(X1)2Wo(X2).0. Equa-
tion ~46! then takes the form

Ẍ5
]Wo~X!

]X
1e G~X,t!2dẊ. ~51!

The last two terms of Eq.~51! will be treated as a perturba
tion, and the equation

Ẍ5
]Wo~X!

]X
~52!

will be called the unperturbed equation.
Let Xo(t) be a homoclinic solution of the unperturbe

equation such thatXo(t)5Xo(2t), satisfying

lim
t→6`

X~t!5X2 . ~53!

ObviouslyXo(t1to) is also the homoclinic solution for an
to . Now may state the following theorem.

Theorem: Assume.~1! there existsto such that

E
t1

t2
G„Xo~t1to!,t…Ẋo~t1to! dtÞ0, ~54!

and ~2! G(•,•)PC(R2) and Wo(•,•)PC1(R2). Then there
existseo.0, such that for alleP(0,e0) there isd0.0, such
that for all dP@0,do# there exists a homoclinic solution o
Eq. ~51! such thatX(2`)5X(`)5X2. Simply put, if the
variable part of the potential functione V(X,t) is not too
large, then for zero or sufficiently small friction termd Ẋ
there exists a homoclinic solution to Eq.~51!. First we prove
the following lemma.

Lemma: Under the assumptions of the theorem, we ha

sup
to

E
t1

t2
G„Xo~t1to!,t… Ẋo~t1to!dt5E1.0

~55!

and

inf
to

E
t1

t2
G„Xo~t1to!,t… Ẋo~t1to!dt5E2,0 ~56!

We will denote the pointst at which the supremum@Eq.
~55!# and infimum@Eq. ~56!# occur byt1 and t2, respec-
tively.
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To prove the lemma we note that

E
2`

`

G„Xo~t1to!,t…Ẋo~t1to!dto

5E
2`

`

G„Xo~ t !,t…Ẋo~ t !dt50, ~57!

wheret5t1to . This is true sinceXo(•) is symmetric and
Ẋo(•) is antisymmetric. Hence

E
t1

t2 E
2`

`

G„Xo~t1to!,t…Ẋo~t1to!dtdto50. ~58!

Then, if there exists ato for which integral~54! differs from
zero, it has to take both positive and negative values;
proves the lemma.

Proof of the theorem: Equation~51! can be rewritten as

ẊẌ1
]Wo~X!

]X
Ẋ5eG~X,t!Ẋ2dẊ2, ~59!

and then

dE

dt
5eG~X,t!Ẋ2dẊ2, ~60!

where

E5Ẋ21Wo~X! ~61!

is the mechanical energy of the particle.
The unperturbed Eq.~52! has the formE5const and the

mechanical energy uniquely parametrizes its solutions. F
we consider the equation

dE

dt
5eG~X,t!Ẋ. ~62!

Let Xe
1(t) denote the solution of the above equation su

that Xe
1(t)5Xo(t1t1) for t,t1 ~the sense oft1 was ex-

plained in the lemma!. Such a choice is possible since su
G(X,•)P@t1 ,t2# for any X. We show that for sufficiently
small e there exists finite timet3 such that Xe

1(t3)
5X2 (X2 is the lower maximum!. Due to the continuous
dependence of solutions on parameters~see Hartman@9#!,

Xe
1~t!5Xo~t1t1!1eX̃e~t! for tP@t1 ,t2#,

~63!

whereX̃e(t) is uniformly bounded for all sufficiently smal
e.

The mechanical energyE of the particle, whose motion is
given by Xe

1(t), remains constant up to timet1, and so
E(t1)5E(2`)5W(X1). During the time interval@t1 ,t2#
it changes byDE1, where

DE15eE
t1

t2
G„Xe

1~t!,t…Ẋe
1~t!dt, ~64!

or, using Eq.~63!,
is

st

h

DE15eE
t1

t2
G„Xo~t1t1!1eX̃~t!,t…„Ẋo~t1t1!

1e Ẋ̃~t!…dt. ~65!

Hence according to the lemma, sinceG(•,•) is uniformly
continuous on@t1 ,t2#3@X1 ,X2#,

DE15eE11O~e2!. ~66!

Hence for sufficiently smalle, DE1.0, and moreover
DE1,EM , where we recall thatDEM5W(X1)2W(X2).
This means that at timet2 the particle mechanical energ
E(t2) satisfiesX2,E(t2),X1. Since, starting from time
t2, the particle will move according to the unperturbed equ
tion E5const, it will pass through the lower maximumX2 at
a finite time~sayt3).

Let Xe
2(t) denote the solution of Eq.~62! such that

Xe
2(t)5Xo(t1t2) for t,t1. In the same manner it can b

shown that the mechanical energy of the particle whose
tion is described byXe

2(t) decreases in a time interva
@t1 ,t2#, and therefore the particle will remain between t
two maxima; i.e., for anyt.2`, X1,Xe

2(t),X2.
Let Xe,d

1 (t) denote the solution of Eq.~60! such that
Xe,d

1 (2`)5X2 andXe,d
1 (ts)5Xe

1(ts), wherets is chosen as
follows: let t12 be a time, such thatXe

1(t12)5X12, where
X12 is the local minimum ofW(X) lying betweenX1 andX2.
Thents5 inf ( t12,t1). In the same way we define the solu
tion Xe,d

2 (t) corresponding toXe
2(t).

Again using the theorem for the continuous depende
of the solution on parameters and initial conditions, we c
show that, for sufficiently smalld, there exists a finite time
~say t4) such thatXe,d

1 (t4)5X1. Obviously for any timet
.2`, X1,Xe,d

2 (t),X2. If d.0, then, in addition,t→`
Xe,d

2 (t)5X12, whereX12 is the minimum betweenX1 and
X2.

Thus we have proved the existence of solutionsXe,d
1 (t)

andXe,d
2 (t). The solutionXe,d

1 (t) passes through the lowe
maximum, while the solutionXe,d

2 (t) does not reach it~Fig.
5!. We can regard solutionsXe,d

1 (t) andXe,d
2 (t) as solutions

of Eq. 51, having two different initial conditionE1 andF1,
where

E15FXe,d
1 ~t1!

Ẋe,d
1 ~t1!

G5FXd
1~t1!

Ẋd
1~t1!

G ~67!

and

F15FXe,d
2 ~t1!

Ẋe,d
2 ~t1!

G5FXd
2~t1!

Ẋd
2~t1!

G , ~68!

whereXd
1 andXd

2 denote solutions to the equation

Ẍ5
]Wo~X!

]X
2dẊ. ~69!

In Fig. 5 the phase space (X,Ẋ) is shown. The trajectories
of Eq. ~69! are denoted by continuous lines, while the dash
lines are trajectories of Eq.~51! in the time interval@t1 ,t2#.
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The trajectories corresponding to solutionsXe,d
1 (t) and

Xe,d
2 (t) follow the trajectory of Eq.~69! up to timet1, when

the forceG(X,t) starts acting. Att1 those trajectories are a
two different pointsE1 and F1; then at timet2 they are at
points E2 and F2, respectively. Starting from timet2 the
trajectories corresponding to solutionsXe,d

1 (t) and Xe,d
2 (t)

follow two different trajectories of Eq.~69!; one of them
passes through the lower maximum, while the other does
reach it.

On the basis of the theorem for the continuous dep
dence of solutions on initial conditions~see Hartman@9#! we
may conclude the following. Any trajectory of Eq.~48! start-
ing at t1 at a point on the line connectingE1 with F1 has to
reach the line connectingF2 with E2 at timet2; such a line
crosses the trajectory of Eq.~69!, tending to the saddle poin
S1 ~see Fig. 5!. Hence there exists a pointH1 lying on the
trajectory connectingE1 andF1, such that trajectory of Eq
~48! starting at timet5t1 from that point reaches, at tim
t2, a point ~say H2), on the other trajectory of Eq.~69!
tending to the saddle pointS1. This means that solution
Xe,d

h (t), such that

FXe,d
h ~t1!

Ẋe,d
h ~t1!

G5H1 ~70!

is the homoclinic orbit; this proves the theorem.
Remarks on the theorem: ~1! Assumption~1! is in fact

very weak; probably it is equivalent to the assumption t
G(•,•)[” 0 on (X1 ,X2)3(2`,`). For the existence o
pulselike solutions to the systems of equations~36!–~38! or
~17! and ~18!, it is not important that the presence of th
RNA polymerase makes the hydrophobic interactio
weaker. It is only necessary that these interactions, in
vicinity of the polymerase, are different than in rest of t
DNA molecule.

FIG. 5. The phase space diagram. The continuous lines de
the trajectories of Eq.~69!. The right maximumS1 is lower thanS2;
due to friction the trajectory starting from the right saddle pointS1

terminates at the node pointN. The additional forceeG(X,t) dur-
ing the time interval@t1 ,t2# prevents the trajectories of the pe
turbed equation~dashed lines! ~51! from following the trajectories
of Eq. ~69!. The trajectory of solutionXe,d

1 (t) ~see text! starts atS1

then passes throughE1 andE2; the trajectory ofXe,d
2 (t) also starts

at S1 and then passes throughF1 and F2. The homoclinic orbit
starts atS1, passes throughH1 andH2, and terminates atS1.
ot

-

t

s
e

~2! Probably a homoclinic solution of Eq.~48! also exists
~under some additional assumptions! when G(X1)5G(X2)
i.e., when the torsional moment applied to the chain is ze
However, this case is more delicate since the energy pum
by the varying part of the potential may cause the traject
to pass over the other~then starting! maximum.

V. CONCLUSION

Based on the proposed model of DNA dynamics,
proved the existence of dissipative traveling~pulselike!
waves propagating along the DNA molecule. The existe
of these waves, within the limits of the considered model
due to two main facts.

~i! The potential energy of the DNA chainF is a double
well function of the twist densityQ8. It follows from the
assumed model thatF is symmetric with respect toQ8, but
for existence of solutions it is not necessary. In the relax
state the chain has a uniform twist densitiesQ85Qo8
5@(B22A2)1/2/Aro# @Eq. 6!# or Q852Qo8 . Let us focus on
the first case. Now, applying the torsional moment at
ends of the chain, one can add some positive twist to
system. This additional twist will spread uniformly over th
chain, making the twist densityQ.Qo . On the other hand
applying the opposite torsional moment, one can rem
twist from the chain, making the average twist densityQ
,Qo . When the average twist density becomes smaller,
energy of the chain grows to some critical point when t
system can jump to a state in which a part of the chain ha
twist opposite to the rest. If the parametereo at Q9 is small,
then it is ‘‘energetically favorable’’ to create an opposite
twisted segment of the chain even if the average twist d
sity is close toQo8 . The untwisted~or oppositely twisted!
segment thus created can then move along the DNA chain
fact the real DNA is usually underwound, and has a sligh
smaller twist density than in the relaxed state. However,
problem is more delicate, since if one underwinds DNA
ten turns, nine turns will be absorbed in supercoili
~writhe!, and only one turn will be absorbed in twist~see
Calladine and Drew@1#, Chap. 6!.

~ii ! The energy dissipated due to local twisting and u
twisting of the DNA molecule is balanced by the ener
pumped by the varying hydrophobic potential of the ba
pair interaction. Without that additional energy, any nonze
dissipation implies that pulselike solutions cannot exist.

The pulselike solutions obtained for the mechanical s
tem correspond to a local untwisting of the DNA molecu
during RNA transcription. The scope of this process is
copy the DNA genetic information into the RNA. During th
transcription the DNA, must untwist locally to let one stran
serve as a template for synthesis of a new RNA strand~Fig.
2 and Ref.@1#!. The untwisted open region, 15–20 base pa
long, then moves along the DNA. The transcription proc
~and so the untwisting of the DNA molecule! takes place in
the vicinity of the protein called RNA polymerase. The v
cinity of the RNA polymerase probably implies that the h
drophobic forces between the base pairs become wea
This can be due to the fact that the RNA polymerase
accompanied by flat oily amino acids such as phenylalan
tyrosine, and tryptophan, which can insert themselves
tween the base pairs@1#. Within the framework of our mode
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this effect is interpreted as a variation of the hydropho
potential. The advancing RNA polymerase forces, by che
cal processes, a large scale ‘‘mechanical’’ motion~the un-
twisting! of DNA molecule.

Unfortunately within the limits of our model we canno
describe the opening of the DNA~separation of two DNA
strands!, because we have assumed that each base pair
rigid body. To analyze the opening one has to include at le
one more degree of freedom to describe the separation o
two bases forming a pair. This goes far beyond our mo
Nevertheless one can check that in the short untwisted
gion, the separation between subsequent base pairs is l
then in the relaxed DNA chain. This means that coupl
between subsequent base pairs is weaker. According to
m

v

c
i-

s a
st
he
l.
e-
ger
g
he

Peyrard-Bishop model@6#, the smaller the coupling betwee
base pair the lower the temperature of the thermal dena
ation of the DNA molecule. This means that thermal fluctu
tions which are too small to denaturate DNA at a physiolo
cal temperature can lead to the opening of an untwisted D
region.
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