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Chemically driven traveling waves in DNA
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The nonlinear mechanical model constructed in a previous dapervo Cimento D20, 833 (1998] is
developed in order to study the dynamics of the DNA double helix. It is assumed that the hydrophobic
interaction between subsequent base pairs may be influenced by a RNA polymerase. The Lagrangian, con-
structed on the basis of “geometrical” properties of the DNA molecule, depends on time and contains first and
second derivatives of the twist angle. The energy dissipation term is added to the dynamical equations resulting
from the Lagrange formalism. It is proved that the system has pulselike solitary wave solutions for which the
dissipated energy is balanced by the energy pumped by the advancing RNA polymerase. The physical inter-
pretation of our solution is the local untwisting of the DNA molecule during transcription of messenger RNA.
[S1063-651%99)00712-9

PACS numbd(s): 87.15.He, 87.10:¢e

[. INTRODUCTION pairs composing DNA consist of one light base and one
heavy base, so their masses are almost equal. That is, the
The basic form of DNA is double helix, consisting of two adenine-thymingA-T) pair has mass 259 a.m.u., and the
sugar-phosphate backbones and a base pairs chain inside gAanine-cytosingC-T) pair is only slightly heavier with
schematic drawing of the duplex DNA in an unwound hypo-mass 260 a.m.u. The total mass per base ipaii. e., the
thetical state, which one can call a planar ladder state, imass with adjacent sugars and phosphate gydsgproxi-
shown in Fig. 1(from Calladine and DreWl]). The distance mately 580 a.m.u. Moreover the H-bond interaction coupling
B between adjacent sugars or phosphates in the DNA chairibe G-C pair is more than twice as strong as that for the A-T
is roughy 6 A , while the thickness of the flat part of the pair. Only in an approximation in which one neglects inter-
DNA base isA=3.3 A , which implies a gap of 2.7 A be- nal degrees of freedom of the base pairs, and treats each base
tween the bases. Because the four DNA bases guanine, aplir as a rigid body, can DNA be regarded as a periodic
enine, cytosine, and thymine are hydrophobic substancesfructure.
these bases tend to stay together, and the surrounding water The interest in the nonlinear dynamics of DNA started
does not fill gaps between them. If the bases are in contactyhen Englandetet al. [2] suggested that the existence of
the distance between their centerd\jssmaller than the dis- solitons propagating along the DNA molecule may be impor-
tance between the adjacent sugBtsThis is because the tant in a process called “RNA transcription.” In the last
sugar-phosphate backbones must wrap around the base pd@cade several modelsee Gaetat al. [3] for the review
chains in order to preserve their length. Elementary geometvere proposed in order to substantiate this idea in quantita-
ric considerations enable one to calculate the adgle by  tive terms. The scope of RNA transcription is to copy genetic
which each phosphate turns relative to its neighboring phoshformation for DNA into messenger RNA. During this pro-
phate along the helix: cess two DNA strands have to locally sepai@eal opening
of DNA) to let one of the strands serve as a template for the

[ (B?—A?%)12 synthesis of a new RNA strand. There are two important
A®=2arcsw§ 2R ):32'30' (@) models, the one proposed by Yakushevighand improved
where R=18 A is the distance between the corresponding
phosphates from the opposite chains. From Epit follows 33A Base |~ 7| Base }_@
that there are roughly 360/32:3L1 phosphates per complete mT
turn of the DNA helix. This result closely agrees with ex- 27A] p  Hole P 16A
periment: almost all DNA double helices have between ten L __
and 12 phosphates per turn. The above analfislowing 3.3A @"‘ Base | __| Base '—@
Calladine and Drew1]) suggests that both right- and left- p Hole P
handed duplex helical structures are expected. Although
there are, in fact, known examples of both types of double Base | __| Base ’—Gg
helices, the right-handed form& and B with 11 and ten

phosphates per helical turn are preferred to the left-ha@ded
form with 12 phosphates per turn.

The base pair sequence codes the genetic information, but ! 184 !
from the mechanical point of view it is a nonperiodic chain.
The four bases composing DNA have different masses. This FIG. 1. The scheme of DNA, the hypothetical planar DNA lad-
poses a problem for all models. Fortunately, the two baseder with its key dimension$ (sugay and P (phosphatg
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FIG. 2. Transcription of messenger RN#f&om Calladine and rigid
Drew[1]). The DNA molecule untwists close to RNA polymerase.
One of the two DNA strands serves as a template for synthesis of a
new RNA strand. q

plate

ho(Aw, 2, 1) q

by Gaeta[5], and the second proposed by Peyrard and
Bishop [6] which concentrates on transversal openings of
base pairs.

In the current paper we propose a different approach to
DNA dynamics based on a “mechanical” model of DNA q
dynamics developed by Lipniacki7]. The constructed
model allowed us to describe analytically torsional traveling L ,
waves propagating along the DNA molecule. The pulselike
solutions described the propagation of an untwigi@dop- FIG. 3. The schematic picture of the mechanical model. The
positely twisted region along the molecule. Local untwisting spring constant of the side spring segments, ighile h,(Aw,z,t)
seems necessary for the formation of a transcription bubblis the energy is the potential energy of hydrophobic interaction
(the braided strands cannot sepaxasad in fact the DNA  between subsequent slabs.
lost one or two turns in order for the RNA polymerase mol-
ecule to function(Fig. 2; also see Calladine and Dré¢#).  motion of the RNA polymerase, which moves along the
The untwisted open region, 15-20 base pairs long, togethghna due to chemical reactions.
with RNA polymerase, moves along the DNA.

In the previous papefLipniacki [7]), the energy dissipa-
tion (dampi.ng was not inclqded in the model. However, it Il. DESCRIPTION OF THE MODEL
seems obvious that the motion of DNA leads to some energy
dissipation, due to the nonelasticity of the DNA molecule or In the proposed modéFig. 3) base pairs are represented
to interaction with the solvent. Moreover it is easy to checkby rigid plates situated along theaxis. The hydrophobic
that when energy dissipation is present, pulse-like solutionforces acting between every two subsequent base pairs are
cannot exist, unless the energy is somehow added to thepresented by springs. The relaxed length of those springs is
system. It was also not explained why the untwisting of theA; however, it is not assumed that the springs satisfy Hook’s
DNA molecule takes place in the vicinity of the RNA poly- law. The sides of slabs are connected by two side springs
merase. The present paper will pursue the already proposéepresenting the sugar-phosphate chains. The side spring
model, connecting the mechanism of energy input with thesegments connecting consecutive slabs have a free I&gth
fact that DNA untwists and opens close to the RNA poly-and a spring constard. The distance between backbone
merase. springs and the duplex axis going through the centers of the

The main idea is the following. In the vicinity of the slabsisr,. The mass and inertial momentum of each plate is
polymerase the hydrophobic forces between base pairs asgjual to the mass and momentum per base pair, while all the
weaker than those in the rest of the DNA molecule. This issprings are assumed to have no mass. It is assumed that
due to the fact that the RNA polymerase is accompanied bgvery slab has two degrees of freedom: it can move along
flat oily amino acids such as phenylalanine, tyrosine, anénd turn around the axis, and its position is described by a
tryptophan, which can insert themselves between the bas#isplacementv and a torsional anglé. WhenA<B, as in
pairs. Thus, close to polymerase, it is easier to separate baggal DNA, the system has two natural minima of enefigy
pairs and so untwist the DNA strands. It is knojdr that a  which all the springs are in the natural spate left-hand
hydrophobic substance called ethidium bromide added to thiwvisted ladder and a right-hand twisted ladder.

DNA slips between neighboring base pairs, and as the result To construct the Lagrangian=T—® of the system, let

the DNA untwists. The dependence of the strength of theus assume that side springs satisfy Hook’s law Then the en-
DNA molecule on the solvent was also confirmed in recentrgy of interaction®; ;,; between two adjacent slabs is
experiments(Smith, Cui, and Bustaman{&]). The hydro-
phobic forces play a crucial role in stretching DNA up to
extensions of 70%, when the separation between bases is 518 ;1 =ho(Aw—A,z,t)+ q(yAw?+4r3 sirf(A®/2) — B)?,
A . The motion of the untwisted region is then forced by the 2

ho(Aw, 2, t) q
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y 2
for the hydrophobic interaction. THe, dependence on posi- T= ﬁ + ﬁ
tion z and timet is due to the fact that hydrophobic forces 2 2
depend(as we stated aboy@n the solvent, and may vary
along the DNA molecule. WheA® is small, 2 sind0/2) 1. EQUATIONS OF MOTION
may be replaced by ® (For A®=32° the error is 1.3%

In the continuum limit,

whereh,(Aw—A,z,t) denotes the potential energy function
f dz, (12

In the further analysis we concentrate on the following
cases:
AW=W'A, AO=0'A 3 (i) In the first case we assume that central sprifidre
w=w @ those at the sidesatisfy Hook’s law[i.e., that the potential
the primes denoting differentiation with respectzoThen functionhis quadratich(w’—1z,t)=k(z,t)(w'~1)?] and
the potential energy of the whole chain has the form then we expand the potential energy in power series with
respect w' —1) and¢’.
(i) In the second case we assume that side spfswgar-
‘DZAJ h(w'—1zt)+q(yw'?+r;0'>~B/A)? phosphate chainsre stretch proof. With that simplification
eOG)//Z
2

we manage to keep the potential functiofw’ — 1,z,t) in its
general form.

dz, (4) In both cases we introduce a non elastic damping term to
the resulting evolution equations.

+

whereh(w’—12z,t)=h,(Az—A,zt)/A.
The term A. The first case

2 Letu’=w’—1 andc=B—1. For further analysis we ex-
A f 0 dz (5) pand the potential energy into a power seri_es with respect to
2 u'=w’—1 and¢’'. We assume that’ ~ e with e<1. The
, ) order of ¢’ has to be chosen carefully to conserve the main
has been added to Ed) in order to describe the energy ,ronerties of the potential energy function. Let us note that

associated with the additional curvature of the side springg,, 4 fixedu’ <c the potential energy is a double well func-
when®" differs from zero. This higher order derivative term o1 with respect tap’, with the minima at

plays a key role both in the physical interpretation and the
mathematical development of the present model. The two ¢'=+\2c+c?—2u' —u'? (12
zero potential energy states are characterized by

while the global minima of the potential energy as a function
(B2—A?)12 of u’,¢’, and ¢" are, foru’=0, ¢'2=2c+c? To con-
Ar, ' 6) serve this important property one has to expand the potential
energy up to fourth order igp’. For smallc, typically ¢’ is
Without the last term in Eq4) the states in whick)’ jumps  of orderc?, while u’ is of orderc. For example, for fixed

w’ =const=1, ®'=const=*

from ¢' =0 the potential energy is minimized for
(BZ_A2)1/2 (BZ_AZ)I/Z q
- I u'=——c. 13
+ Arg to Arg (7) ki g (13

will also have a minimum zero energy, which seems unMoreover, in the second term of E¢L0), describing the
physical because in those states the side spiiingssugar- pc_)tennazl energy of the side spring;=w'—1 is compared
phosphate chaifsre strongly distorted. with ¢'<. This justifies the assumption

The kinetic energyT is u'~e, ¢'2~e, (14)

=4[
A

wherem andJ are the mass and moment of inertia per base ‘I’:f
pair, and the dot denotes time derivative.

mw? JO?2

n . (8  Wheree<1. Hence to withinO(€?) we have
2 2 ’

k(z,t)u’?2+q((u'—c)?+ ¢'2(u’ —c)+ ¢'*14)

To write the Lagrangian in a simpler form, one may em- eq"?
ploy units in whichA=1; thus let +——|dz (15
¢=r,0, e=e0/r§, I=J/r§. 9 One can check that the zero energy state now occurs for

_ o _ u’ =0 and¢’ = +/2c. So here, as in the original case, there
The potential and kinetic energies of the system are now are two minimum energy states, and again for any fixéd
e < c the potential energy is a double well function of the twist
7 eqd” density¢'.
— r_ 7 12 __ 2
® J h(w'=12,0)+q(Yw'"+ ¢""~B)"+ 2 }dz, The evolution equations fou and ¢, given by Euler-
(100  Lagrange equations with Lagrangian=T—®, are
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. eg”\’ The last assumption reflects the fact that from now on we

lp=q|2¢' (U —c)+ "3~ —] , (16)  restrict our considerations to torsional traveling waves forced

q by advancing RNA polymerase, the presence of which, as

. stated above, influences the hydrophobic forces between
mu=(2(k(z,t)+q)u’+qg¢’'?)’". 17

base pairs.

The dispersive relation for small amplitude oscillations. According to assumptlpnzl)l, ¢>=,—v¢’. We are look-
around the relaxed states=0 and ¢=2¢ zin the case N9 for solutions satisfyinge’—¢, for (z—vt)— =z,
k=const can be found in Ref7]. where ¢;#0. This means thatp#0 at infinity; in other
Motion of the DNA molecule leads in general to energy words, the DNA rotates. This may be a surprising conclu-
dissipation. The mechanical energy can be dissipated due &on, but rotation of the DNA probably accompanies the real
a friction during the motion through the solvent, or due toRNA transcription. Strictly speaking, there are two possibili-
nonelasiticity of the DNA molecule. In the first case we mayties: since the RNA polymerase has to follow one of the
expect that the dissipation term is proportional to the locaPNA strands, either the DNA must rotate around its axis, or

angular velocity. There are, however, some fundamentaltn® RNA polymerase together with the lomgRNA must

problems going beyond the presented model when includin

this term; we discuss these when passing to traveling wav

solutions.

tate around the DNA. The latter seems less probable. Of
ourse the rotation of an “infinitely long” chain will lead to
infinite energy dissipation. Physically, the rotation of the

Now we focus on the second case, and take into accourd VA May be due to action of many RNA polymerases
the energy dissipation due to the inelastic torsional motion ofVNich are attached to the DNA and simultaneously make it

DNA molecule. That is, to the right-hand side of E#j6) we
add the dissipation terp¢” (wherep= const>0) propor-

tional to the speed with which the torsion of the sugar-

phosphate chains changes. Thus we have

e¢!/l !
q

l$p=q| 2¢'"(u'—c)+ '~ +p ¢ (19

We observe that without “potential energy” terms, the dy-
namical equatior{18) reads

lp=p &', (19
and integrating we obtain
lp=pg"+C,, (20)

which is the diffusion equation for the torsional angpe

This suggest that the assumed forpy(’) of the “nonelas-
tic” damping term is resonable.

The role of the dissipation term will become even more

clear when we arrive at the final ordinary equati@6) for
X=dg¢/dr, 7=(z—vt). One may think that the nonelastic

dissipation term should be assumed in the fqnijﬂ, but in
such a case, on the right-hand side one of @6) one ob-

tains, instead of-vpX, another term-vpX, which is irrel-
evant since it only modifies the coefficielnt Usually when
the order of the original dynamic equation ris then the
order of dissipation term has to lme- 1.

Now focusing our attention on solitary wave solutions, we
transform Eqs(17) and(18) into ordinary differential equa-
tions (ODE’s). The solitary waves propagate without chang-
ing their form, i.e.,

u(zt)y=u(z—vt)=u(7), &(z,t)=¢(z—vt)=¢(7),

(21)

wherev is the wave velocity. Furthermore we assume

k(z,t)=k(z—vt)=Kk(7). (22

rotating. The problem is far from being understood. This is
why we restrict our considerations to nonelastic damping.
Equations(16)—(21) yield

|v2¢:q( 2¢p(U—c)+ ;;53—?— % +Cy, (23
mv2u=2(Kk(&)+q)u+qe¢?+Ch, (24)

where the dot denotes differentiation with respect-taC,

and C,=C,—2qc are the integration constants, wheZe

and — C, represent, respectively, the torsional moment and
the stretching force applied to the chain at its ends. From Eq.
(24) we obtain

o
e q¢2> 2gqc+C, | 25
mvZ—2(k(7)+q)
and forX= ¢ we have
eX=—vpX+a(r)X3+b(r)X+Cy, (26)
where
. ( 2k(7)—mv? ) -
A= S+ —mv?)’
Iv+2qcmv2—2qC,—2(k(7)+q)lvi—4gkc
b(7)= .
2(k(7)+qg)—mv?
(28)

For sufficiently small velocityw?< 2k/m, the coefficient
a>0; moreover,b<0 when c(v?(m—I/c)—2k)—C,<0.
These two conditions are not very restrictive; the first one is
satisfied for any reasonable propagation velouityk is of
order 10 pN/A, which implies that our condition is satisfied
for velocities as large as 1®ases per secopdThe second
condition is satisfied if the strain{C,) is not large enough
to change the structure of the DNA molecule. Equati®®)
can then be rewritten in the form
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. oh }

where mv2w=——2\w+Cy, (42)

JW
a(n)X* b(r)X?
U(r,X)=-— ) + > +C, f (30 , .

w2+ ¢p?>—B?=0, (43

is a double maximum function with respect Xo provided
the torsional moment, is not too large.

To end this section we observe that in the limgit>c
(stretch-proof sugar-phosphate chajns

b(7)=by(7)=—2a,c—Iv?
(31)

a(r)=ay(7)=k—mv?/2,

_Cz.

where the dot denotes differentiation with respect.té\fter
some simple algebra we obtain the following equation for

X=¢:

This means that the assumption that the sugar-phosphajth
chains are stretch proof does not influence the main proper-

ties of the final dynamical equation. In Sec. Il B we assume

that the side chains maintain their length. Such simplifica-
tions allow us to keep the potential function of hydrophobicFinally,

interaction in its general form.

B. The second case

The potential and kinetic energies are now

n2
<I>=f {h(W'—l,Z,t)ﬂ‘ 5 dz, (32
T—f mw? |¢2 d 33
AN (39
In addition we have the constraint
w2+ ¢'2—B?=0, (34)

implying that the side springs maintain their lengh
The evolution equations fow and ¢ given by Euler-
Lagrange equations with the Lagrangian

L=T—®+\(W'?+¢'?—B?), (35
where\ is the Lagrange multiplier, are
lp+(ed” +2\p') —pdp”=0, (36)
. [ oh '
mw—(——Z)\w’) =0, (37
ow'’
w2+ ¢'?—B?=0. (39

As in the first case we included an inelastic friction tepiﬁ’
in Eg. (36). Assuming

w(z,t)=w(z—vt)=w(7),

d(z,t) = d(z—Vvt)= (1),
(39
h(w'-1zt)=h(w'—1z-vt)=h(w'—1,7), (40

we transform the set of equatiof36)—(38) into ODE’s. Af-
ter integration we obtain the system of equations

. oh oW .
eX=X(m—=1)v?+| —+C;| == —vpX+C,, (44
W X
w=BZ—X2. (45)
o - IWGT) o 46
T ax % 40
where
1[(m—1)v2X? . .
W(X'T)Z—E T—I—CZX-F[h(W(X),T)-FClW]
(47)
and s=vple.

If h(w,7) is a single minimum function with respect to
for any 7 (i.e., the potential of the base pair interaction has a
single minimum then h(X,7) is a symmetric double well

function sincew is symmetric with respect t¥. The poten-
tial function W(X, 7) has precisely two maxima with respect
to X (for any 7), satisfying the constraint that the coefficients
C, andC; are not too large. Whe@,=0, W(X,7) is sym-
metric; whenC,#0, W(X,7) is not symmetric; and one
maximum is higher then the other.

Since the potential functiod (X, 7) appearing in Eq(29)
in Sec. IllA is a special case of the potential function
W(X,7), it is sufficient to examine EQq(46) only in our
further considerations. The homoclinibeteroclini¢ solu-
tions of Eq. (46) correspond to traveling wave pulselike
(kinklike) solutions of the initial system of equatid6)—
(38) or (17) and (18).

Since the mechanical analogy seems appropriate for the
problem[Eq. (46)], we callX the position of the particle, and
7 the time. IfW=W(X) and §=0, Eq.(46) simplifies to

. dW(X)
X=— (49)

This equation can be interpreted as the equation of one-
dimensional frictionless motion of a particle in the potential
field W(X). If C,=0 [see Eq.(47)], thenW(X)=W(—X),
and Eq.(48) has a heteroclinic solution describing the par-
ticle motion from one maximum to the othéstarting atr
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W), X IV. EXISTENCE OF THE HOMOCLINIC ORBIT
We confine our considerations to the case when
W(X,7)=Wy(X)+eV(X,7), (49

and there exists a pair <7, such that
/\/ suppV(X,-) e[ 7,75] for any X. Let

’ N(X,7)

, el G(X, 7= —. (50)

~—— N
\/\ We also assume tha,(X) has precisely two maxima at
Xy and X, andW,y(X;) #W,(X,) [the last is true if the tor-

sional momentC,#0; see Eq(47)]. Without loss of gener-
ality, we may assuma@Ek,;:=W,(X;) —Wy(X5)>0. Equa-

N/
)

N, 1 tion (46) then takes the form
. OWL(X) )
X= X +e G(X,7)—oX. (52

The last two terms of Eq51) will be treated as a perturba-
tion, and the equation

'
t
v
'
t
|

. IWL(X
- (90>(< ) (62
N N Yl
- %J/ N— will be called the unperturbed equation.
Let X,(7) be a homoclinic solution of the unperturbed
(b) equation such thaX,(r)=X,(— 7), satisfying
FIG. 4. The potential energy/(X) and phase spac&(X) dia- lim  X(7)=X,. (53
gram of Eq.(48). () The maxima have the same height; the het- T+ 00

eroclinic orbit spans the two maximhe two saddle poinjs (b)
The right maximum is lower, and there exists a homoclinic orbit ObviouslyX,(7+ 7,) is also the homoclinic solution for any
starting and terminating on that maximum. 7,. Now may state the following theorem.

Theorem Assume.(1) there existsr, such that

= —oo and ending at=), [Fig. 4a)]. If C,#0, then one - )

maximum is lower then the other, and there exists a ho- f G(Xo( 7+ 70), I Xo( 7+ 75) d7#0, (54)
moclinic orbit starting and ending on the lower maximum, i

[Fig. 4(b)]. and(2) G(-,-) e C(R?) andW,(-,-) e CL(R?). Then there

When >0, however,_for\N:W(X) a homoclinic orbit  existse, >0, such that for alk < (0,¢,) there iss,>0, such
cannot exist. The term 6X in Eq. (46) can be interpreted as that for all 5e[0,5,] there exists a homoclinic solution of
a friction proportional to the particle velocity. Since the me-Eq. (51) such thatX(—«)=X(x)=X,. Simply put, if the
chanical energy is dissipated, it is obvious that a particlevariable part of the potential functioa V(X, ) is not too
starting from a maximuntwith zero kinetic energycannot  |arge, then for zero or sufficiently small friction tersm X

return to this maximum. there exists a homoclinic solution to E@J1). First we prove
If Wo(X1) —Wo(X2) >0, whereX; andX;, are maxima of  the following lemma.
W, (-), then, for a properly chosed, there exists a hetero- | emma Under the assumptions of the theorem, we have

clinic orbit “spanning” the upper and lower maxima. Recall
that s=vp/e; hence a givens implies the velocity of the 72 -
traveling F\)/vave. In suchga case tF;]e velocity of tl‘)l/e kinklike ~ SUP L G(Xo(TH70),7) Xo(7+ 7o)dT=E">0
traveling wave depends oW, (X;) —Wy(X,), i.e., on the T ' (55)
value of the torsional momer@®, applied to the molecule
[see Eq(45)]. and

The situation is different when there is a nonzero friction
term 6X but the potentiaW=W(X, r) depends on time. In ; 2 Y -
this case the dissipated mechanical energy can be balanced I:)f ffl CXo(7+70),7) Ko7+ 7o)dr=E <0 (56)
by the energy pumped by the varying potential field. In such
a case a homoclinic solution may exist. In Sec. IV we showwWe will denote the points at which the supremurfiEq.
that, under some conditions, E@6) has a homoclinic solu- (55)] and infimum[Eq. (56)] occur by 7+ and 7, respec-
tion. tively.
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To prove the lemma we note that 75 - :
AElzef GXo(T+ 7))+ eX (1), X7+ 77)
o0 ) T
f G(Xo( 7+ 70), T)Xo( 7+ 75)d 7, .
—o +eX(7))d7. (65)
_Jw G(X,(1), )X, (t)dt=0, (579  Hence according to the lemma, sin€-,-) is uniformly
—® continuous or 7y, 75 X[ X1,X5],
wheret= 7+ 7,. This is true sinceX,(-) is symmetric and AE;=€eE*+0(€?). (66)

XO(-) is antisymmetric. Hence o
Hence for sufficiently smalle, AE;>0, and moreover

T2 [ . AE.<Ey, where we recall thaE,;=W(X;)—W(X5,).
L j_w C(Xo( T+ 70), )Xo( 7+ 70)d7d7,=0. (58)  This means that at time, the particle mechanical energy
! E(r,) satisfiesX,<E(7,)<X;. Since, starting from time
Then, if there exists a, for which integral(54) differs from 72, the particle will move according to the unperturbed equa-
zero, it has to take both positive and negative values; thi§on E=const, it will pass through the lower maximux at
proves the lemma. a finite time(say 3).
Proof of the theoremEquation(51) can be rewritten as Let X_ () denote the solution of Eq(62) such that
X (1) =Xo(7+ 77) for 7<74. In the same manner it can be
shown that the mechanical energy of the particle whose mo-
tion is described byX_(7) decreases in a time interval
[71,72], and therefore the particle will remain between the
and then two maxima; i.e., for any> —oo, X;<X_(7)<Xj.
dE Let X:ﬁ(r) denote the solution of Eq60) such that
— = €eG(X,T)X— X2, (60)  X{s(—°)=XzandX] s(7s)=X7 (75, whererg is chosen as
dr follows: let 7, be a time, such thaX_ (71,)=X;,, where
X1, is the local minimum ofV(X) lying betweenX; andX,.
Thenrs=inf (7,,7). In the same way we define the solu-
E=X2+WO(X) (61) tion X;_a(r) _corresponding tX, (7). .

Again using the theorem for the continuous dependence
is the mechanical energy of the particle. of the solution on parameters and initial conditions, we can
The unperturbed Eq52) has the formE=const and the show that, for sufficiently smalp, there exists a finite time

mechanical energy uniquely parametrizes its solutions. Firdisay 74) such thatX; 4(74)=X;. Obviously for any timer

IW,(X) .

XX+ X X=€eG(X,7)X— 6X2, (59

where

we consider the equation >—o0, X;<X, 5(1)<Xy. If >0, then, in addition7— oo
dE X 5(7)=X12, whereX,, is the minimum betweeiX; and
N Xo.
—=eG(X,7)X. 62 2 . .
dr ¢ (X,7) 62 Thus we have proved the existence of solutmi%(r)

. _ ) andX_ 5(7). The solutionxzﬁ(r) passes through the lower
Let Xi(T) denote th+e solution of the above e+quat|on suchmaximum, while the solutioX_ 5(7) does not reach itFig.
thatX, () =Xo(r+77) for 7<7, (the sense of " was ex-  g) e can regard solutions; ,(7) andX_ 4(7) as solutions

plained in the lemmpa Such a choice is possible since suppof £q. 51, having two different initial conditioE; andF,
G(X,-) e[ 71,7,] for any X. We show that for sufficiently \ynere

small e there exists finite timers such that X (73)

=X, (X, is the lower maximurn Due to the continuous Xjﬁ( T1) X5(11)
dependence of solutions on parametsee Hartmar9]), Ei=| .. =4 (67)
Xe,g( 7'1) Xa ( 7'1)
X:(T)=X0(T+ T+)+6’5(E(T) for 7e[7,7], and
(63)
N . XeolrD)] [X5(m)
whereX.(7) is uniformly bounded for all sufficiently small F.=|. = , (68)
€. X;5( 1) X5 (71)
The mechanical enerdy of the particle, whose motion is . - . _
given by X7 (7), remains constant up to time;, and so WhereX; andX; denote solutions to the equation
E(71)=E(—0)=W(X,). During the time interva[ 71, 75]
it changes byAE;, where K= &V\[/;;((X) — 58X, (69)

AE1=esz G(X (), DX (ndr, (64)

) In Fig. 5 the phase spacX(X) is shown. The trajectories

of Eq. (69) are denoted by continuous lines, while the dashed
or, using Eq.63), lines are trajectories of E@51) in the time interval 71, 75].



7260 TOMASZ LIPNIACKI PRE 60

(2) Probably a homoclinic solution of E¢48) also exists
(under some additional assumptipnshen G(X;)=G(X5,)
i.e., when the torsional moment applied to the chain is zero.
However, this case is more delicate since the energy pumped
\ by the varying part of the potential may cause the trajectory
h v, C X to pass over the othéthen starting maximum.

|

V. CONCLUSION

Based on the proposed model of DNA dynamics, we
proved the existence of dissipative travelifigulselike
waves propagating along the DNA molecule. The existence
of these waves, within the limits of the considered model, is

: . . ue to two main facts.
FIG. 5. The phase space diagram. The continuous lines deno% (i) The potential energy of the DNA chaih is a double

the trajectories of Eq69). The right maximuns;, is lower thanS,; . . PN
due to friction the trajectory starting from the right saddle p&nt well function of the twist densityd’. It follows from the

terminates at the node poiht The additional forceeG(X, 7) dur- assumed model thak _'S Symmetrlc with respect t®", but
ing the time interval =,,7,] prevents the trajectories of the per- fOr €xistence of solutions it is not necessary. In the relaxed
turbed equatiorfdashed lines(51) from following the trajectories ~ State the chain has a uniform twist densiti€s =0
of Eq. (69). The trajectory of solutioiX_ 4(7) (see textstarts atS, =[(B?-A%)YZAr,] [Eq. 6]or®'=—0/. Let us focus on
then passes throudh, andE,; the trajectory ofX_ 4(7) also starts  the first case. Now, applying the torsional moment at the
at S; and then passes through and F,. The homoclinic orbit ends of the chain, one can add some positive twist to the
starts atS;, passes throughl; andH,, and terminates &,. system. This additional twist will spread uniformly over the
chain, making the twist densitp >0 ,. On the other hand,
The trajectories corresponding to solutiox§ s(7) and  applying the opposite torsional moment, one can remove
X_ s(7) follow the trajectory of Eq(69) up to timer;, when ~ twist from the chain, makmg the average twist dengity
the forceG(X, 7) starts acting. Atr; those trajectories are at <®o. When the average twist density becomes smaller, the
two different pointsE; and F4; then at timer, they are at  €nergy of th_e chain grows to some critical point Wh_en the
points E, and F,, respectively. Starting from time, the sygtem can jump to a state in which a part of tf)g chain has a
trajectories corresponding to solutioks 5(7) and X_,(7) WISt opposite to the rest. If the pa,\’rameegrat@’ is small,
follow two different trajectories of Eq(69); one of them then it is “energetically favorable” to create an oppositely

passes through the lower maximum, while the other does nd¥visteéd segment ,Of the chain even if the average twist den-
reach it. sity is close to®/. The untwisted(or oppositely twistefl

On the basis of the theorem for the continuous depense€gment thus created can then move along the DNA chain. In

dence of solutions on initial conditiorisee Hartmai9]) we  fact the real DNA is usually underwound, and has a slightly
may conclude the following. Any trajectory of E@8) start-  Smaller twist density than in the relaxed state. However, the
ing at =, at a point on the line connectir, with F, has to problem is more delicate, since if one underwinds DNA by
reach the line connecting, with E, at time 7,; such a line ten turns, nine turns will b_e absorbed in _supgrconlng
crosses the trajectory of E¢69), tending to the saddle point (Writhe), and only one turn will be absorbed in twittee

St (see Fig. 5. Hence there exists a poift; lying on the ~ Calladine and Drevj1], Chap. 6. o

trajectory connectind, andF,, such that trajectory of Eq. (1) The energy dissipated due to local twisting and un-
(48) starting at timer= 7, from that point reaches, at time Wisting of the DNA molecule is balanced by the energy
7,, a point (say H,), on the other trajectory of Eq(69) pumped by the varying hydrophobic potential of the base

tending to the saddle poir,. This means that solution pair interaction. Without that additional energy, any nonzero
X" (1), such that ! dissipation implies that pulselike solutions cannot exist.
€,0 1

The pulselike solutions obtained for the mechanical sys-
tem correspond to a local untwisting of the DNA molecule
during RNA transcription. The scope of this process is to

1 (70 copy the DNA genetic information into the RNA. During the
transcription the DNA, must untwist locally to let one strand
serve as a template for synthesis of a new RNA sti@&igl

is the homoclinic orbit; this proves the theorem. 2 and Ref[1]). The untwisted open region, 15—20 base pairs

Remarks on the theorenil) Assumption(l) is in fact long, then moves along the DNA. The transcription process
very weak; probably it is equivalent to the assumption thatand so the untwisting of the DNA molecuileakes place in

G(-,-)#0 on (X{,X5)X(—0,»). For the existence of the vicinity of the protein called RNA polymerase. The vi-

pulselike solutions to the systems of equatié®8)—(38) or  cinity of the RNA polymerase probably implies that the hy-

(17) and (18), it is not important that the presence of the drophobic forces between the base pairs become weaker.

RNA polymerase makes the hydrophobic interactionsThis can be due to the fact that the RNA polymerase is

weaker. It is only necessary that these interactions, in thaccompanied by flat oily amino acids such as phenylalanine,
vicinity of the polymerase, are different than in rest of thetyrosine, and tryptophan, which can insert themselves be-

DNA molecule. tween the base paif4]. Within the framework of our model

i

XE,&( 1)
XE,&( )
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this effect is interpreted as a variation of the hydrophobicPeyrard-Bishop mod¢E], the smaller the coupling between

potential. The advancing RNA polymerase forces, by chemibase pair the lower the temperature of the thermal denatur-

cal processes, a large scale “mechanical” motitlee un-  ation of the DNA molecule. This means that thermal fluctua-

twisting) of DNA molecule. tions which are too small to denaturate DNA at a physiologi-
Unfortunately within the limits of our model we cannot cal temperature can lead to the opening of an untwisted DNA

describe the opening of the DNfseparation of two DNA  region.

strand$, because we have assumed that each base pair is a

rigid body. To analyze the opening one has to includg at least ACKNOWLEDGMENTS
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